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Single-nucleotide variants (SNVs), pertinent to aging and disease,
occur sporadically in the human genome, hence necessitating
single-cell measurements. However, detection of single-cell SNVs
suffers from false positives (FPs) due to intracellular single-
stranded DNA damage and the process of whole-genome amplifi-
cation (WGA). Here, we report a single-cell WGA method termed
multiplexed end-tagging amplification of complementary strands
(META-CS), which eliminates nearly all FPs by virtue of DNA com-
plementarity, and achieved the highest accuracy thus far. We val-
idated META-CS by sequencing kindred cells and human sperm,
and applied it to other human tissues. Investigation of mature
single human neurons revealed increasing SNVs with age and po-
tentially unrepaired strand-specific oxidative guanine damage. We
determined SNV frequencies along the genome in differentiated
single human blood cells, and identified cell type-dependent mu-
tational patterns for major types of lymphocytes.

single-cell sequencing | mutations | false positives | Tn5 transposition |
complementary DNA strands

Genome-wide determination of single-nucleotide variants (SNVs)
in single cells has been challenging due to false positives

(FPs) from two sources. First, polymerases used for amplification
make errors. The error rates of base substitution during in vitro
DNA synthesis for most DNA polymerases range from 10−4 to
10−6 (1), indicating that thousands of FPs can be generated in the
first cycle of amplification for a human genome of 6 billion bp.
Second, the harsh conditions of cell lysis and amplification cause
DNA damage, which, together with damage that occurred natu-
rally in the live cell (e.g., deamination and oxidative damage), can
be misrecognized by DNA polymerases and turned into errors.
For example, it has been reported that deamination of cytosine
resulted in the artifact of C>T transitional mutation in single-cell
multiple displacement amplification (MDA) (2). These FPs usu-
ally significantly outnumbered naturally occurring SNVs, posing a
limitation on single-cell genomics.
While a true SNV has to be on the same position of both

strands, both polymerase errors and DNA damage occur only on
one strand of DNA. Therefore, FPs can be filtered out through
checking the complementarity of the two strands after se-
quencing (Fig. 1A). Current methods to achieve this, involving
ligation of strand-specific adapters (3, 4) or physical separation
of the two strands (5), are labor-intensive and suffer from sig-
nificant sample loss of single cells. In silico SNV-calling algo-
rithms, on the other hand, rely on heterozygous single-nucleotide
polymorphisms and the assumption that single strands are am-
plified uniformly, which still leads to FPs when one of the strands
fails to be amplified (6, 7). Here, we report a whole-genome
amplification (WGA) method termed multiplexed end-tagging
amplification of complementary strands (META-CS), which is
able to separately label and amplify the two strands of DNA in a
one-tube reaction and accurately identify de novo SNVs from a
single cell.

Results
META-CS for SNV Identification. META-CS is based on our previ-
ously developed WGA method, multiplexed end-tagging ampli-
fication (8). Briefly, genomic DNA from single-cell lysates was
fragmented by Tn5 transposition, and each fragment was ran-
domly tagged with 2 out of 16 unique transposon sequences
which served as priming sites in the following reactions (Fig. 1B).
The use of multiple transposon sequences provided fragment-
specific barcodes and reduced the amplification loss associated
with the intramolecular hairpin structure that may form when a
fragment is tagged by the same sequence on both ends (SI Ap-
pendix, Fig. S1). Next, DNA fragments were melted by heating,
and the two single strands were preamplified by two sequential
polymerase extension reactions to obtain strand-specific labeling
(Fig. 1C). Excess primers were removed by exonuclease I after
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each round of polymerase extension reaction. The resulting
products, amplified separately from the forward and reverse
strands of the original DNA, could be distinguished by the way
they mapped to the reference genome. SNVs were then deter-
mined as variants agreed by both strands (SI Appendix, Fig. S2).
The complete META-CS procedures were performed in one
single tube and could easily scale up to multiwell plates.
To determine the specificity of our strand-labeling strategy, we

used a synthetic single-stranded DNA as template and sequenced

the amplification product. We observed four discordant strands
out of 173,635 reads, corresponding to a strand conversion rate of
2.3 × 10−5. This suggested a high specificity of the strand-labeling
strategy, although different templates and other combinations of
META primers might result in different strand conversion rates.

Characterization of Detection Accuracy. To evaluate the accuracy of
META-CS, we clonally expanded a single ancestor cell from a
human haploid cell line (eHAP) for 5 d to a few hundred cells
(Fig. 2A). Ten single cells were picked by mouth pipetting and
successfully amplified by META-CS (SI Appendix, Fig. S3). The
rest of the cells were used for a second expansion of another 8 d
to millions of cells for bulk DNA extraction to represent the
ancestor cell’s genome. Both single-cell and bulk samples were
mapped to the human reference genome and de novo SNVs
were identified in single cells compared with the ancestor cell.
We first determined the minimum number of sequencing

reads required to confidently identify a SNV. We used the letter
“a” (for allelic depth) to represent the minimum number of total
reads, and the letter “s” (for stranded allelic depth) to represent
the minimum number of strand-specific reads. To filter out se-
quencing errors, we started with a total number of no less than
four reads, requiring at least two reads from each strand (a4s2).
We then examined the robustness of our calling with respect to
the thresholds. Compared with FPs that occur on only one strand
of DNA, true positives existing on both strands of DNA gener-
ally have higher allelic frequencies after amplification, and are
thus less sensitive to the changing of threshold. Increasing the
threshold of the strand filter from a4s2 to a8s4, we found that the
number of SNVs detected from the eHAP single cells only de-
creased ∼2-fold (95/48) (SI Appendix, Fig. S4). In comparison,
for callings without the strand filter, increasing the threshold
from a4s0 to a8s0 led to an ∼6.4-fold decrease (11,153/1,754).
Notably, after adjustment for detection efficiency, the number of
SNVs remained almost unchanged for callings with the strand
filter but decreased continuously for callings without the strand
filter (Fig. 2B). This suggested that META-CS was able to
measure mutation rates with as few as four sequencing reads.
In day-5 eHAP single cells, META-CS achieved an average

(±SD) of 50.9 ± 12.2% (n = 10) genome coverage and detected
9.5 ± 5.9 autosomal de novo SNVs per cell, which corresponded
to 70 ± 25 SNVs after correction with a strand-specific detection
efficiency of 15.9 ± 6.1% (Fig. 2C, SI Appendix, Fig. S5, and
Dataset S2). Among the 95 detected SNVs, 63 were C>A
transversions (Fig. 2D). The transition-to-transversion (Ti/Tv)
ratio was 0.27, which was consistent with the number previously
reported from a similar single-cell clonal expansion experiment,
where FPs were filtered out through sequencing kindred cells
due to the lack of reliable technique at the time (9). Further-
more, the mutational spectrum of the 95 SNVs was different
from the error spectrum of the Q5 DNA polymerase (Ti/Tv =
0.89) used for amplification and spectra of DNA damage, which
were mainly composed of C>T transitions (10). As a comparison,
mutations identified without applying the strand filter (a4s0)
showed a very different spectrum that was predominated by
transition mutations (Ti/Tv = 1.73) (SI Appendix, Fig. S6).
To validate this C>A-dominated mutational spectrum, we

further amplified and sequenced eHAP single cells picked on day
13 (after the second expansion). If the true mutational spectrum
of eHAP kindred cells was different from the spectrum of FPs,
the observed spectrum would shift as the cells obtained more
true mutations with cell division. With the same threshold of
a4s2, we identified an average of 231 ± 65 (n = 19) de novo
SNVs per cell, suggesting that cells from day 13 indeed accu-
mulated more mutations compared with cells from day 5
(Fig. 2E). Nevertheless, the mutational spectrum of day-13 cells
(540 mutations) remained almost identical to day-5 cells
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Fig. 1. Identification of SNVs by META-CS. (A) FPs on single strands can be
filtered out through sequencing the two complementary strands of double-
stranded DNA (dsDNA). Complementary strands are shown in dark and light
gray. DNA damage and polymerase errors occur randomly on one of the two
strands, while true mutations are detected at the same position on both
strands. (B) Transposition of the META-CS transposome to single-cell DNA. A
mixture of 16 unique transposon sequences (only 6 are shown for simplicity)
are mixed with Tn5 transposase with an equal molar ratio to form trans-
posome complexes, which cut the single-cell DNA and tag each fragment
with two random transposon sequences. (C) Single-cell WGA of the forward
and reverse strand by META-CS.
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(Pearson correlation coefficient r = 0.995) with a Ti/Tv ratio of
0.31 (Fig. 2F).

Validation of META-CS with Single Human Sperm. We then asked if
META-CS can distinguish mutational spectra in different cell
types. We amplified and sequenced sperm cells from a healthy
male donor in his late 50s. There are three advantages of using
single sperm as a technical control. First, the germline mutation
rate of sperm is very low, making characterization of FPs more
accurate. Second, the mutation rates and spectra of sperm across
a wide range of ages have been characterized in both population
and single-cell studies (11–14). Third, it has been shown that
using single cells in G2/M phase can significantly increase am-
plification efficiency and accuracy (15), thus complicating
method evaluation. In contrast, sperm do not undergo cell cycles,
which rules out G2/M-phase cells.
With META-CS, we identified an average of 114 ± 45 (n = 19)

germline SNVs per cell (Fig. 2G). This number is close to the
typical number of mutations (∼92 SNVs, 95% CI 80 to 105) at
the donor’s age, as determined from a previously published dataset
of large-scale family trios (16). Instead of the C>A transversions
that predominated the mutational spectrum of eHAP kindred
cells, the spectrum of sperm was mainly composed of C>T and
T>C transitions (Ti/Tv = 1.46) (Fig. 2H). Moreover, the spectrum
identified from single sperm cells by META-CS was largely con-
sistent with the spectrum derived from the data of family trios in
ref. 16 (r = 0.93) (SI Appendix, Fig. S7). A previous study of single
human sperm reported a much higher Ti/Tv ratio of 5.6 with a
C>T predominant spectrum (14), which was possibly due to FPs
generated during WGA.
Taken together, these data indicated that most of the SNVs

identified by META-CS in single eHAP and sperm cells were true
positives. We estimated the upper bound of the false positive rate

(FPR) of META-CS to be ∼2.4 × 10−8 (70/2.9 Gb) for day-5
eHAP kindred cells. However, the true FPR of META-CS was
very likely much lower, masked by de novo mutations generated
during in vitro clonal expansion.

De Novo SNVs in Human Neurons. Somatic SNVs that accumulate
in mature neurons have long been speculated to play a role in
aging and neural degeneration. It was not until recently, how-
ever, that studies of single neurons had been performed by
single-cell MDA (17). With the aim of characterizing the mu-
tational patterns in neurons with a higher accuracy, we amplified
single prefrontal cortex (PFC) neurons from postmortem brain
tissues of three individuals. We identified an average of 379 ± 66
(n = 10, 19-y-old), 871 ± 123 (n = 11, 49-y-old), and 1,304 ± 202
(n = 11, 76-y-old) SNVs, corresponding to an increase of ∼16
SNVs per year (Fig. 3A). Our results supported the observation
that SNVs in neurons accumulate with age (18). However, the
number of SNVs identified by META-CS was generally lower
compared with previous studies (17, 18), indicating that unrec-
ognized FPs still existed with other methods.
SNVs in PFC neurons were mainly T>C and C>T transitions

(Fig. 3B), which were likely results of adenine and cytosine de-
amination (19). It has been previously shown that human de
novo mutations were enriched in late-replicating domains, pos-
sibly due to an accumulation of single-stranded DNA (ssDNA)
during the late stages of DNA replication (20). Mutations in
nondividing neurons, in contrast, were depleted from late-
replicating domains but enriched in transcribed regions (Fig. 3C),
supporting the hypothesis that SNVs in mature neurons partially
resulted from transcription-associated DNA damage (17).
Since ssDNA damage can be turned into strand-specific

“mutations” during amplification, they can be detected by
META-CS. Now, having defined somatic SNVs as those found
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Fig. 2. Validation of META-CS in clonally expanded single cells and human sperm. (A) Experimental design for clonal expansion of an eHAP single cell. (B)
Number of SNVs per cell with regard to the changing of calling threshold. The horizontal axis represents the minimum number of reads required to call a
mutation. For callings with the strand filter (solid line), thresholds are set as a4s2, a5s2, a6s3, a7s3, and a8s4. For calling without the strand filter (dashed line),
thresholds are set as a4s0, a5s0, a6s0, a7s0, and a8s0. Error bars represent SD. (C, E, and G) Box and whisker plot of the number of SNVs determined in day-5
eHAP (C), day-13 eHAP (E), and human sperm single cells (G). Each dot represents a single cell. The dashed line in G indicates the number of germline
mutations at age 56 by fitting a linear regression model to data obtained from family trios (16). (D, F, and H) Relative contribution of mutation types for day-5
eHAP (D), day-13 eHAP (F), and sperm (H). Data are represented as the mean contribution of each mutation type from all single cells. Error bars represent SE.
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Xing et al. PNAS | 3 of 8
Accurate SNV detection in single cells by transposon-based whole-genome amplification of
complementary strands

https://doi.org/10.1073/pnas.2013106118

G
EN

ET
IC
S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
28

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://doi.org/10.1073/pnas.2013106118


www.manaraa.com

on both strands, we further defined ssDNA damage as having the
mutational allele on only one strand, while having the reference
allele on the other (Fig. 1A and SI Appendix, Fig. S8). Note that
damage called under this definition consists of not only biolog-
ical damage that occurred in live cells but also artifacts generated
during WGA. For example, a relatively high temperature (70 °C
for 15 min) is required during cell lysis to inactivate the Qiagen
protease. Such heat may cause additional DNA damage. Never-
theless, we reasoned that WGA-associated artifacts were constant
for samples treated under the same procedures and, therefore,
variations observed across samples should reflect real sample
differences. We found that there was a significant increase in
ssDNA damage in the 76-y-old brain compared with the younger
ones (Fig. 3D). Strand-specific spectrum analysis revealed that the
increase mainly came from G>T transversions (SI Appendix, Fig.
S9), which were reported to be a result of guanine oxidation to
8-hydroxyguanine (21, 22). However, there might be other types of
DNA damage which were not detected by META-CS because
certain bases, such as uracil and inosine, were not preferred by the
Q5 DNA polymerase. Future work may use an alternative poly-
merase, such as the New England BioLabs (NEB) Q5U DNA
polymerase, to address this issue.

De Novo SNVs in Human Peripheral Blood Cells. Somatic mutations
in hematopoietic stem and progenitor cells (HSPCs) have been
studied and associated with blood cancers (23, 24). SNVs in
single HSPCs can be characterized through sequencing the bulk
DNA of a single-cell clone expanded in vitro (25, 26). However,
matured peripheral blood cells cannot be expanded from a single
cell and hence have not been widely investigated. With the rapid
development of cancer immunotherapy, it is necessary to closely
examine the genomic variations of immune cells.
With META-CS, we amplified and sequenced a total of 53

single peripheral blood mononuclear cells (PBMCs) from a

healthy male donor (same as the sperm donor). An average of
1,494 ± 721 SNVs per cell were identified. This number was
more than one order of magnitude higher than the germline
mutations of the same individual, but comparable with other tis-
sues as measured by clonal organoid cultures derived from mul-
tipotent cells (27), which indicated a higher mutational burden in
somatic cells than in germ cells (28).
The mutational spectrum of PBMCs, which mainly consisted

of C>T transitions (Fig. 4A), showed a strong correlation with
the spectrum of hematopoietic stem cells (r = 0.991) (SI Appendix,
Fig. S10). In addition, the genomic distribution of SNVs was de-
pleted from transcribed regions but enriched in late-replicating
domains (Fig. 4B), contrary to the neurons we studied but simi-
lar to mutations found in multipotent cells (27), suggesting that
SNVs in PBMCs were mainly from HSPCs.
Similar to META, META-CS exhibited high amplification

uniformity and was able to detect V(D)J recombination (SI
Appendix, Fig. S11) (8). By V(D)J recombination patterns, 15
cells were inferred to be B lymphocytes and 22 cells were
inferred to be T lymphocytes (SI Appendix, Fig. S12). B cells are
known to undergo somatic hypermutation (SHM) during matu-
ration, which introduces a high rate of mutation in immuno-
globulin genes to fine-tune the antibody response. Out of the 15
B cells, we identified 4 SHM+ B cells defined as having at least
three mutations clustering within 2-kb regions of an immuno-
globulin gene (SI Appendix, Fig. S13). Mutations detected from
immunoglobulin gene regions in SHM+ B cells were enriched in
the predefined SHM hotspot motif (SI Appendix, Fig. S14) (29).
In contrast, none of the T cells or other PBMCs had such
hypermutations within the same regions. Similar to a recent
study, we found that SHM+ B cells had a higher SNV frequency
compared with other B cells (Fig. 4C) (30). It has been shown
that targets of SHM are not limited to immunoglobulin genes,
and aberrant SHM has been linked to certain types of B cell

O
bs

er
ve

d/
ex

pe
ct

ed
 S

N
V

s 

0 20 40 60 80
0

1000

2000

1500

S
N

V
s 

pe
r 

ce
ll

In
tro

nic

Exo
nic

1

0.5

1.5

ss
D

N
A

 d
am

ag
e 

pe
r 

ce
ll

19
yr

49
yr

76
yr

*
**

Age (years)

P
ro

po
rt

io
n 

of
 m

ut
at

io
ns

0

0.2

0.4

0.6
2883 sSNVs

PFC neuron

C>T at non-CpG
C>T at CpG

C>A
C>G

T>A
T>C
T>G

Substitution type

0

2 Enriched
Depleted

Ear
ly

M
id

La
te

Not significant
*

* **
**

500

6000

7000

8000

9000

10000

A

B D

C

Fig. 3. SNVs and DNA damage identified in single human neurons. (A) SNVs in single neurons identified from three individuals (red for 19 y old, blue for 49 y
old, and orange for 76 y old). Each dot represents a single cell. The dataset is fitted by a linear regression line with 95% CI. (B) Relative contribution of
mutation types in PFC neurons. Data are represented as the mean contribution of each mutation type from all 32 single cells. Error bars represent SE. The total
number of mutations is indicated (Top). (C) Enrichment and depletion of SNVs from single neurons in exons, introns, and replication timing domains (early,
mid, and late). The expected values are calculated assuming that SNVs distribute randomly along the genome. Error bars denote 95% CI. *P < 0.005, **P <
0.0001, two-tailed binomial test. (D) ssDNA damage in single neurons from three individuals. Each dot represents a single neuron. Data are adjusted by
detection efficiency and shown as a box and whisker plot. *P < 0.05, **P < 0.01, two-tailed t test.

4 of 8 | PNAS Xing et al.
https://doi.org/10.1073/pnas.2013106118 Accurate SNV detection in single cells by transposon-based whole-genome amplification of

complementary strands

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
28

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://doi.org/10.1073/pnas.2013106118


www.manaraa.com

lymphomas (31, 32). However, it is unclear how SHM contrib-
uted to a higher rate of mutation across the whole genome.
Interestingly, after excluding the four SHM+ B cells, other

B cells and PBMCs showed a lower number of SNVs than T cells
(Fig. 4C). To further investigate the mutational mechanism, we
divided the T cells into three subgroups based on the number of
SNVs, corresponding to 3,038 ± 1,061 (high, n = 5), 1,645 ± 113
(mid, n = 8), and 1,170 ± 186 (low, n = 9) SNVs (SI Appendix,
Fig. S15). A correlation matrix of the mutational spectrum in a
trinucleotide context revealed that the spectrum of SHM+
B cells was most distinct from other blood cells (Fig. 4D and SI

Appendix, Fig. S16). Excluding the SHM+ B cells, the spectra of
other B cells and other PBMCs were closer to HSPCs than
T cells. Within the T cell subgroups, the higher the SNV number,
the further the spectrum diverged from other blood cells. By
using nonnegative matrix factorization (33), we decomposed the
mutational spectra of single blood cells into three mutational
signatures (Fig. 4E and SI Appendix, Fig. S17). Signature A
showed a high correlation with the mutational spectrum of
HSPCs (r = 0.976) and contributed to most of the mutations
detected in other B cells and other PBMCs. Signature B was
mostly found in SHM+ B cells. Signature C mainly contributed

S
N

V
s 

pe
r 

ce
ll

2000

4000

6000

0

**

*
*

SHM
+ 

B ce
ll

Oth
er

 

B ce
ll T ce

ll

Oth
er

 

PBM
C

SHM
+ 

B ce
ll

Oth
er

 B
 ce

ll

T ce
ll h

igh

Oth
er

 P
BM

C

HSPC

SHM+ 
B cell

T cell low

 Other 
B cell

Other 
PBMC

HSPC

0.5

1 C
orrelation

Principal component 1

P
rin

ci
pa

l c
om

po
ne

nt
 2

Neuron

HSPC

B cell

T cell

T cell mid

T cell high

T ce
ll m

id

T ce
ll l

ow

P
ro

po
rt

io
n 

of
 m

ut
at

io
ns

0

0.2

0.4

0.6
7102 sSNVs

PBMC

C>T at non-CpG

C>T at CpG

C>A

C>G

T>A

T>C

T>G

Substitution type

C
on

tr
ib

ut
io

n 
of

 s
ig

na
tu

re
s

0%

100%

50%

SHM
+ 

B ce
ll

Oth
er

 B
 ce

ll

T ce
ll h

igh

Oth
er

 P
BM

C

T ce
ll m

id

T ce
ll l

ow

Sig A

Sig B

Sig C

In
tro

nic

Exo
nic

Ear
ly

M
id

La
te

O
bs

er
ve

d/
ex

pe
ct

ed
 S

N
V

s 

1

0.5

1.5

0

Enriched
Depleted

*

*

**

**

**

A B C

D

E

F

Fig. 4. Mutational frequency and spectrum of SNVs vary across different types of cells. (A) Relative contribution of mutation types for PBMCs. Data are
represented as the mean contribution of each mutation type from all single cells (53 PBMCs). Error bars represent SE. The total number of SNVs is indicated
(Top). (B) Enrichment and depletion of SNVs detected in PBMCs in exons, introns, and replication timing domains (early, mid, and late). The expected values
are calculated by assuming that SNVs distribute randomly along the genome. Errors bars denote 95% CI. *P < 0.005, **P < 0.0001, two-tailed binomial test. (C)
Box and whisker plot of the number of SNVs identified in PBMCs. Each dot represents a single cell. *P < 0.05, **P < 0.01, two-tailed t test. (D) Correlation
matrix of the mutational spectrum in a trinucleotide context for PBMCs and HSPCs. Data of HSPCs were obtained from ref. 25. (E) Proportion of the total
number of detected SNVs in PBMCs as contributed by each mutational signature. Error bars represent SE. (F) Principal-component analysis of the mutational
spectrum in a trinucleotide context for a T cell, B cell (SHM+ B cells were excluded), HSPC, and neuron. Each dot represents a single cell.

Xing et al. PNAS | 5 of 8
Accurate SNV detection in single cells by transposon-based whole-genome amplification of
complementary strands

https://doi.org/10.1073/pnas.2013106118

G
EN

ET
IC
S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
28

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013106118/-/DCSupplemental
https://doi.org/10.1073/pnas.2013106118


www.manaraa.com

to T cells and its contribution correlated with the number of
SNVs in T cell subgroups. This observation implied that, com-
pared with other B cells and PBMCs whose mutations were
mostly from HSPCs, one or multiple additional mutational
processes that generated mutations at a higher rate and caused a
different mutational spectrum must exist in T cells. There are
many potential mutational processes during the maturation and
maintenance of T cells. An illustration of this is the reported
long-lasting immunological memory maintained by a rapid
turnover of memory T cells (34), which likely results in an ac-
cumulation of additional mutations, especially for immunologi-
cal responses occurring at early stages of life.

Discussion
We present META-CS, a single-cell whole-genome amplification
method that leverages the complementarity of the two strands
from double-stranded DNA to achieve accurate SNV identifi-
cation. META-CS exhibited four major advantages compared
with previous methods. First, META-CS is not limited to diploid
cells with heterozygous single-nucleotide polymorphisms (SNPs),
which would be useful for haploid cells or cancer cells with an-
euploidy. Second, the method is very robust. The success rate of
single-cell amplification is around 90%. For example, 32 samples
were successfully amplified from 36 single human neurons.
Third, the whole reaction is completed in a single tube, which
simplifies the experiment procedure and reduces sample loss.
Fourth, with META-CS, a mutation can be identified with as few
as four reads, which significantly reduces sequencing cost. In
contrast to the 30 to 60× sequencing depth commonly used for
single-cell SNV identification, most cells were sequenced be-
tween 3 and 8× in this work (Dataset S2).
We validated the accuracy of META-CS with clonally expanded

kindred cells and human sperm and further applied the method to
various human primary tissues. The mutational pattern of a single
cell reflects the history of the cell’s and its precursor cells’ DNA
damage and repair processes, which are closely related to cell
function-specific features, such as transcription, DNA methyl-
ation, chromatin structure, and DNA replication. With highly
accurate SNVs identified by META-CS, we were able to distin-
guish cell types based on single-cell mutational spectra. Principal-
component analysis of single-cell mutational spectra in a trinu-
cleotide context showed that neurons and blood cells were clearly
separated into two clusters (Fig. 4F). Within the cluster of blood
cells, despite being derived from common ancestral stem cells, the
majority of T cells were well-separated from B cells. The clustering
of B cells and HSPCs indicated the stem cell origin of most mu-
tations found in B cells. Although the underlying mechanism
causing the T cell-specific mutational spectrum needs further in-
vestigation, it is evident that, with the capability to detect single-
cell SNVs with high accuracy, META-CS will expand our under-
standing of fundamental biology including development, aging,
and generation of diseases such as cancer.

Materials and Methods
Human Subjects. The peripheral blood and sperm cells were collected from a
deidentified male donor with written consent. The procedure was approved
by the Institutional Review Board at Harvard.

Fresh-frozen postmortem brain samples from the prefrontal cortex were
obtained from the NIH NeuroBioBank at the University of Maryland. All
three samples were Caucasians and tested negative for HIV and hepatitis B
surface antigen. The youngest sample, UMBN4916, was a 19-y-and-47-d-old
male with a postmortem interval (PMI) of 5 h, and died of drowning in a car
accident. The intermediate sample, UMBN4915, was a 49-y-and-160-d-old
male with a PMI of 5 h, and died of atherosclerotic cardiovascular disease.
The oldest sample, UMBN5219, was a 76-y-and-348-d-old female with a PMI
of 3 h, and died of complications of cancer.

Published Data. Germline de novo SNVs from family trios were taken from
table S4 of ref. 16. Parental SNVs were extracted with the “Phase_combined”

column annotated as “father” and the “Phase_source” column annotated as
“three_generation” or “both_approaches”.

Exonic and transcribed regions were downloaded from the UCSC Table
Browser (35).

The regions of replication timing domains were downloaded from ref. 27
with the link https://wgs11.op.umcutrecht.nl/mutational_patterns_ASCs/
data/genomic_regions/.

SNVs in human hematopoietic stem cells were downloaded from Men-
deley Data (“Population dynamics of normal human blood inferred from
spontaneous somatic mutations”: https://data.mendeley.com/datasets/yzjw2stk7f/
1) in ref. 25. SNVs from clones labeled as “BMH” were used in the mutational
spectrum and principal-component analysis.

Cell Culture. The human haploid cell line, eHAP, was purchased from Horizon
Discovery (C669). Prior to clonal expansion, the cells were first seeded in a
10-cm cell-culture dish supplemented with 10% fetal bovine serum (FBS) and
1% penicillin-streptomycin in Iscove’s modified Dulbecco’s media (IMDM)
(Thermo Fisher; 12440053) and maintained at a confluency of <70%
according to the cell-culture protocol from Horizon Discovery.

On day 0, spent medium from the culture plate was collected and
centrifuged at 300 × g for 5 min; the supernatant was transferred to ∼96
wells on a 384-well cell-culture plate with 50 microliters per well. Upon
medium removal, the cells on the plate were trypsinized using TrypLE
(Gibco; 12605036) at 37 °C for 3 to 5 min, followed by addition of 10 mL
complete medium (IMDM with 10% FBS and 1% penicillin-streptomycin) to
quench TrypLE. The cells were centrifuged at 300 × g for 5 min and resus-
pended and diluted in complete medium to one cell per 10 microliters. Ten
microliters of such a cell suspension was added to each well with medium on
the 384-well plate (so that on average there was one cell in 60 μL of medium
per well). After 3 h, each well was visually inspected under a microscope to
check which wells contained one cell per well.

On day 5, cells in one well (which initially had one cell) were trypsinized
using the same trypsinization procedure above (with TrypLE at 37 °C for 3 to
5 min, followed by addition of complete medium); 12 of the single cells were
picked by mouth pipetting for the assay, while the rest of the cells were
reseeded into one well on a 12-well plate with 2 mL of fresh complete
medium.

The reseeded cells were cultured and maintained at a confluency of <70%
for 8 more days, and on day 13 they were harvested for fluorescence-
activated cell sorting (FACS) (using a BD FACSJazz) and bulk genomic DNA
extraction.

Bulk DNA Extraction and Library Preparation. Bulk DNA was extracted fol-
lowing the manufacturer’s protocol with the Qiagen DNeasy Blood & Tissue
Kit (69504). Libraries were prepared with the Illumina TruSeq DNA PCR-Free
Library Prep Kit (20015962).

Isolation of Single Cells. Blood was drawn into K2EDTA-coated tubes (BD) and
placed on ice immediately. Peripheral blood lymphocytes were isolated with
Ficoll-Paque PLUS (GE) with 1× phosphate-buffered saline + 2 mM ethyl-
enediaminetetraacetic acid (EDTA) as the salt solution (8).

Sperm were isolated from freshly ejaculated semen after swim-up in G-IVF
PLUS (Vitrolife).

Neuronal nuclei were isolated as previously described (36). Both density
gradient centrifugation and immunostaining (anti-NeuN, Alexa Fluor 488-
conjugated; Millipore; MAB377X) were included. RNase inhibitor was omitted.

Single cells were mouth pipetted or sorted (FACSJazz flow cytometer; BD)
into 0.2-mL ultraviolet-irradiated DNA low-bind tubes (MAXYMum Recov-
ery; Axygen) containing lysis buffer.

Whole-Genome Amplification and Library Preparation by META-CS. Tn5 trans-
posase was expressed from the pTXB1-Tn5 plasmid (Addgene; 60240) and
purified as previously described (37). DNA oligos were ordered from IDT with
polyacrylamide-gel electrophoresis purification.

META-CS transposon DNA was prepared as previously described (8). We
used 16 META tags in this work (Dataset S1).

Each of the 16 META transposons was annealed at a final concentration of
5 μM in annealing buffer (10 mM Tris, pH 7.5, 50 mM NaCl, 1 mM EDTA) and
then pooled with equal volumes. Tn5 transposase and the pooled META
transposons were mixed at an equal molar ratio at room temperature for
30 min to form transposomes, which were diluted to a final concentration of
125 nM and stored at −80 °C.

Single cells were lysed in 2 μLMETA lysis buffer (20 mM Tris, pH 8.0, 20 mM
NaCl, 0.15% Triton X-100, 25 mM dithiothreitol, 1 mM EDTA, 1.5 mg/mL
Qiagen protease [19155], 500 nM carrier ssDNA) at 50 °C for 1 h, 70 °C for
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15 min. The sequence of the carrier ssDNA is the same as in LIANTI (5′-TCA
GGTTTTCCTGAA-3′) (2). Lysed cells could be stored at −80 °C if not
immediately amplified.

Single-cell lysate was transposed by the addition of 8 μL transposition mix
(leading to a final concentration of 10 mM TAPS, pH 8.5, 5 mM MgCl2, 8%
polyethylene glycol 8000, and 0.38 nMMETA transposome) and incubation
at 55 °C for 10 min. Transposases were removed by the addition of 2 μL
stop buffer containing 300 nM NaCl, 45 mM EDTA, 0.01% Triton X-100,
and 1 mg/mL Qiagen protease and incubation at 50 °C for 30 min, 70 °C for
15 min.

First-strand tagging was performed by the addition of 13 μL Strand
Tagging Mix 1 containing 5 μL Q5 reaction buffer, 5 μL Q5 high GC enhancer,
0.8 μL 50 μM (total) Adp1 primer mix (Dataset S1), 0.6 μL 100 mM MgCl2, 0.6
μL water, 0.5 μL 10 mM (each) dNTP mix, 0.25 μL of 20 mg/mL bovine serum
albumin (NEB), and 0.25 μL Q5 DNA polymerase (NEB; M0491) and incuba-
tion at 72 °C for 3 min, 98 °C for 30 s, 62 °C for 5 min, 72 °C for 1 min. Adp1
primers were removed by the addition of 1 μL exonuclease I (NEB; M0293)
and incubation at 37 °C for 30 min, 80 °C for 20 min.

Second-strand tagging was performed by the addition of 4 μL Strand
Tagging Mix 2 containing 1 μL Q5 reaction buffer, 1 μL Q5 high GC enhancer,
1 μL 50 μM (total) Adp2 primer mix (Dataset S1), 0.855 μL water, 0.1 μL
10 mM (each) dNTP mix, and 0.05 μL Q5 DNA polymerase and incubation at
98 °C for 30 s, 62 °C for 5 min, 72 °C for 1 min. Adp2 primers were removed
by the addition of 1 μL exonuclease I (NEB; M0293) and incubation at 37 °C
for 30 min, 80 °C for 20 min.

Strand tagging products were then amplified by the addition of 19 μL PCR
mix containing 5 μL NEBNext Multiplex Oligos Universal Primer, 5 μL NEB
Index Primers (NEB; E7335S, E7500S, E7710S, E7730S), 4 μL Q5 reaction
buffer, 4 μL Q5 high GC enhancer, 0.4 μL 10 mM (each) dNTP mix, 0.4 μL
water, and 0.2 μL Q5 DNA polymerase and incubation at 98 °C for 20 s, 10
cycles (or 11 cycles for haploid cells) of [98 °C for 10 s, 72 °C for 2 min], 72 °C
for 2 min.

Libraries were purified by DNA Clean and Concentrator-5 columns (Zymo;
D4013) and amplification efficiency was checked by Bioanalyzer (SI Appen-
dix, Fig. S3). Single-cell libraries were pooled together, and size selection was
performed with Ampure XP beads (Beckman Coulter). To maximize frag-
ment recovery, the pooled library was divided into three groups based on
fragment size. Long-size fragments were selected by the addition of 0.6×
beads. The supernatant was transferred to a new tube and midsize frag-
ments were selected by further addition of 0.15× beads (final 0.75×). The
supernatant was transferred to a new tube and short-size fragments were
selected by addition of another 0.15× beads.

Sequencing. Long-size libraries were sequenced with paired-end 2 × 250 bp
on an Illumina HiSeq 2500. Midsize and short-size libraries were sequenced
with paired-end 2 × 150 bp on an Illumina HiSeq 4000. Long-size and midsize
libraries were sequenced for all single cells; short-size libraries were only
sequenced for samples 340-2, 340-3, 340-4, 340-5, 340-13, 340-14, and 340-
15. Twenty percent PhiX (Illumina; FC-110-3001) was added to avoid the low-
complexity issue at the 19-bp transposase recognition site. A list of se-
quencing information is shown in Dataset S2.

Data Preprocessing. We used premeta from https://github.com/lh3/pre-pe to
preprocess raw single-cell paired-end reads. This tool identifies transposon
insertion sites, merges overlapping ends, and trims Illumina sequencing
adapters. We aligned preprocessed single-cell reads with two mappers,
BWA-MEM v0.7.17 (38) and Minimap2 v2.12 (39), both with their default
settings for short reads. The two-mapper strategy reduces false positive SNV
calls caused by false read mapping.

Identification of Single-Nucleotide Variants.We used lianti pileup from https://
github.com/lh3/lianti to generate the initial variant call set, including
germline variants and somatic SNVs, with the following command line:
“lianti pileup -nLXXX -P20 -b um75-hs37d5.bed -ycf hs37d5.fa bulk.bam
sample1.bwa.bam sample1.mm2.bam sample2.bwa.bam sample2.mm2.bam
. . .”, where XXX is the number of single-cell binary alignment map (BAM)
files, -P20 ignores alignments with a clipping 20 bp or longer, file “um75-
hs37d5.bed” indicates high-quality regions in the hs37d5 version of the
human reference genome, and -n considers fragment strand (i.e., the
mapping strand of the first read in a read pair) for single-cell BAMs.
The output of this command line is a multisample variant call format (VCF)
file containing the number of forward and reverse reads at each potential
variant site.

We called somatic SNVs by processing the initial call set with the plp-
joint.js script from https://github.com/lh3/lianti. For brain samples, we used

the command line “plp-joint.js -a4 -s2 -r all.rep -v gnomad-01.snp.txt.gz -u
sample.vcf.gz,” where “gnomad-01.snp.txt.gz” gives the list of gnomAD
calls having ≥1% population frequency and “all.rep” indicates which
BAMs are generated from the same sample/cell. We call an ALT
(i.e., nonreference) allele if the allele is supported by at least four reads in
total (-a4) and two reads from each strand (-s2). As we are using two
mappers, we always choose the smaller read count between the two
mappers. The plp-joint.js script also filters somatic calls if the ALT allele
balance (the fraction of ALT reads) is below 20%, drops calls overlapping
with gnomAD ≥1% calls, removes somatic calls within 100 bp from each
other (this filter was removed with option -w0 for calling the somatic
hypermutations in B cells), and filters calls within 10 bp from the 5′ or 3′
end of reads. The procedure above calls ALT alleles, including both
germline SNPs and somatic SNVs. We classify an ALT allele to be somatic if
no bulk reads support the ALT allele. We estimate the false negative rate
of SNV by comparing ALT calls in single cells and germline heterozygous
SNPs in the bulk.

Sperm and blood cells were sequenced from the same individual.We called
somatic SNVs by jointly considering both sperm and blood bulks with com-
mand line “plp-joint.js -r all.rep -v gnomad-01.snp.txt.gz -u -a4 -s2 -D40 -A15
-b2 sample.vcf.gz.” With two bulks, we can further call a somatic SNV if only
one of the bulks has no reads supporting the SNV allele. The false negative
rate in sperm samples is estimated by excluding all heterozygous calls by the
plp-joint.js command with -h all.hap option, where “all.hap” indicates which
cells are haploid. The rest of the treatment is identical.

SNVs in eHAP cells are called by the command line “plp-joint.js -r all.rep -v
gnomad-01.snp.txt.gz -u -a4 -s2 -D40 -A15 -P sample.vcf.gz.” Similar to
sperm, the false negative rates are estimated by excluding all heterozygous
calls. The calling thresholds are examined with -a and -s options. For ex-
ample, -a4 -s0 indicates that a call needs to be supported by at least four
reads in total without requirement of strand-specific reads.

A full description of SNVs detected in 133 single cells is given in
Dataset S3.

Identification of ssDNA Damage. Potential ssDNA damage-associated muta-
tions and amplification artifacts (including damage generated during WGA
and polymerase errors), which are indistinguishable in the experiment, are
called with a similar procedure except that we require a call to be supported
by at least four reads from the mutational allele and four reads from the
reference allele (SI Appendix, Fig. S8 and Dataset S3).

Genomic Distribution Analysis. Overlapping regions of the downloaded
browser extensible data (BED) files of exonic and transcribed regions were
merged with BEDTools (40). Intronic regions were determined by the sub-
traction of exonic regions from transcribed regions. The number of muta-
tions observed was determined by intersecting with surveyed genomic
regions (for autosomes only). The expected number of mutations was cal-
culated by multiplying the genome-wide mutation frequency by the length
of surveyed genomic regions. Two-tailed binomial tests were performed
with P < 0.05 considered significant.

Mutational Signature Analysis. The mutational frequency of each single cell
(or single-cell clone derived from stem cells) was calculated in a context of 96
trinucleotide substitution, with 5′ and 3′ sequences acquired from GRCh37.
Three mutational signatures were extracted using SigProfiler (41) from 53
single peripheral blood mononuclear cells. The contribution of three mu-
tational signatures to each cell type or group was calculated by the mean
contribution for each single cell within the group.

Principal-Component Analysis. Principal-component analysis was performed
using MATLAB. The mutational frequency in a context of 96 trinucleotide
substitutions of 32 PFC neurons, 22 T cells, 11 B cells, and 73 hematopoietic
stem cell clones was used for the analysis shown in Fig. 4F.

Data Availability. Raw sequencing data reported in this article have been
deposited in the National Center for Biotechnology Information Sequence
Read Archive (accession no. PRJNA533595). Code is available at GitHub
(https://github.com/lh3/lianti and https://github.com/lh3/pre-pe).
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